GPS for Disaster Operations

Objectives

- Explain FEMA's use of coordinates.
- Explain basic GPS theory as applied to actual field use.
- List common problems and their prevention.
- Demonstrate the ability to configure the unit, obtain, record, and verify coordinates in the field.

Introduction

Course Content

- Section 1 Introduction
- Section 2 Mapping and GPS Theory
- Section 3 Unit Features
- Section 4 Field Operations
- Section 5 Practical Exercise
- Section 6 Quality Control
- Section 7 Summary

Evolution of GPS

- 1978 NAVSTAR
- 1980 Civilian use
- 1995 Full Constellation
- 2000 Selective Availability turned off
- 2005 Additional Bands
- 2010 30-50 cm accuracy

FEMA use of GPS Information

- Often no physical address
- Federal Grants requirement
- Damage location validation
- Special considerations
- Flood Plain mapping
- Repetitive loss rule

Who uses GPS information?

- Response PDA
- Public Assistance Project Worksheet, compliance
- Mitigation site survey, flood plains
- Historic Special maps (burial sites, districts)
- Environmental Special maps (species, wetlands)
- GIS special projects, creating maps
- Headquarters long term tracking & analysis

FEMA Requires Accuracy of 20 Meters

Example of Use

Current FEMA Performance

- 20% PW correctly entered coordinates
- Common mistakes
 - Transcription errors
 - Wrongly formatted
 - Bad Conversions

Target Performance Goal: 95% Correct

World View

Grid Formats

 FEMA Format Decimal Degrees hddd.ddddo

Location N 38.04417° W078.49839°

Universal Trans Mercator

- Degrees Decimal Minutes
 - hdddomm.mmm

•US National Grid

- Degrees, Minutes, Seconds
 - hddomm'ss.s"

Datums- another user error

- Default setting is for NAD83 or WGS84
- NAD27 is older
- What is a datum
 - Start point for model
 - Mathematical model of earth ellipsoid
 - World not round

NAD 27 and NAD 83

MAGNITUDE OF DATUM SHIFT (METERS)

GPS – How does it Work?

- Constellation of 24 + satellites
- 6 different orbits
- 20,200 km above earth
- Able to see at least 4 at any given time

The Signal from the Satellite

- Microwave Radio Frequency
- Effective Output 500W
- Line of Sight
- Pass through clouds, glass, plastic
- Blocked by buildings, mountains, etc.
- Weaker signals under trees

Signal Components

- Almanac (telemetry) updated location of all satellites
- Unique Satellite identification code
- Pseudorandom noise code similar to a song
- Alignment of PRN code allows GPS receiver to determine time delay

Offset = 68.2 milliseconds

Time Delay = Distance

- Signal travels at speed of light (c)
- Time delay x c = distance
- If delay = 0.0682 s then distance = 20,446 km

Time Delay = Distance

Therefore, we know we are located on a sphere 20,446 km from satellite

GPS Trilateration

- Second satellite is 24,000 k away
- Intersection two spheres circle
- Third satellite intersection gives two possible points •
- One point near earth's surface
- Determines Pseudorange

Time Correction

- Error of 1/1000 second = 186 m
- Atomic Clocks used in Satellites
- Quartz Clock in GPS receiver
- Needs to be corrected
- Corrected by seeing fourth satellite

More Satellites are Better

- Receiver selects best signal
- Geometry affects accuracy
- Watch satellite page
- If accruing signal from additional satellites good to wait
- Able to watch accuracy improve

Sources of Error

Error Source	Typical Error	DGPS Error
Selective Availability*	100 M	_
Ionosphere	10 M	_
Troposphere	1 M	_
SV Clock	1 M	_
SV Orbit	1 M	-
Pseudo – Range Noise	1 M	1 M
Receiver Noise	1 M	1 M
Multipath	0.5 M	0.5 M
TOTAL ERROR	15 M	3 M

Precision vs Accuracy

- 0300,4396 defines a
 1000 meter box
- 03003,43960 defines a 100 meter box
- 030039,439609 defines
 a 10 meter box
- 0300391,4396091 gives a 1 meter box
- Garmin Etrex gives 1 meter precision

Precision vs Accuracy

- Unit precise to 1 meter
 BUT
- Accurate to 100 meter when selective availability turned on
- Accurate to 15 m under normal conditions
- Accurate to 3 m if WAAS signal obtained

dGPS - WAAS

- dGPS able to reduce several errors (<3m accuracy)
- Receiver able to pick up dGPS signal called WAAS
- WAAS explanation

Can you tell if you have dGPS?

- Newer versions of GPS units are WAAS enabled
- Garmin Etrex series indicates differential data downloaded by a "D" on Satellite page.
- Accuracy improves

Satellite Page with 9 Satellites Being Tracked and WAAS Enabled WAAS Satellite is No. 35 and 'D' in Signal Bars for GPS Satellites

Summary — Why Coordinates?

- Coordinates give a unique address for every square meter on planet
- Allow plotting a location without road address
- Several Formats exists "
- Using the correct format critical for accuracy "Degree Decimal"

Summary – How GPS Works

- Obtain radio signal from GPS satellite
- Measures time it takes for signal to reach earth to determine distance
- With four satellites can determine location

Summary – Improving Accuracy

- See more satellites (15 meters)
 - Open area
 - Wait to lock on
 - Wait for better Geometry
- Obtain differential Signal (3 meter)

SECTION THREE

Features

Features of eTrex VistaTM

Installing Batteries

- Two AA last for 12 hours
- Turn-off when between work sites
- Bring extra batteries
- Battery indicator

Using Button Functions

Power Button

- Turning on
- Turning off
- Light
- Page
- Zoom
- Click Stick

Notification Message

- After turning GPS on
- If inside unable to find any satellites
- Error Message appears
- Acknowledge by using Click StickTM.

Previewing Main Pages

Main Menu

- Reached by page button
- Use Click Stick to move within page
- Need to configure/check settings when issued GPS
- All configurations changes/checks from Setup page.

Setup Menu

- Six Options/Icons
- We will discuss
 - Units
 - System
 - Time

Units

- Position Format
 - hddd.ddddd
- Map Dattum
 - WGS 84 or NAD83
- Distance Speed
 - English Units

System

• GPS

- Normal
- Always switches to normal after being turned off.

WAAS

- Enabled

Time

- Minutes and seconds are downloaded from the satellite
- Accurate as atomic clock
- Hours must be set to time zone.

GPS Safety Tips

- Turn off while driving
- Do not place on dash
- Be aware of potentially dangerous conditions
- Avoid dangerous atmospheres

Start-Up Location

- Travel to site
- Find a safe initial location
- Flat and level
- Open Area Clear view of sky
- Stationary

Start-Up Sequence

- Press and hold power button
- Press Page button twice
- Satellite page

Time to Acquire Reading

Start Condition	Description	Time
Hot	On within 4-6 hours	15 – 30 seconds
Warm	Within 500 miles	45 seconds
Cold	Moved over 500 miles	5 minutes*

Cold Starts

- Allow unit to attempt on startup (5 minutes)
- On Poor Satellite window choose new location. Then map
- Scroll triangle to location. Press ENTER
- Wait, try second location

Satellite Page

- Status Window
- Constellation
- White, Grey, Black circles
- Signal Strength bar
- WAAS info
- Location/coordinates

After initial location reading

- Accuracy improves with time
- Walk around
- Observe constellation
- Wait for better geometry

Where to take readings

- Safe location at site
- See satellites
- Close to center
- Front (address)
- Linear

Emergency Work

- Category A Debris
 - Widespread
 - Centered
- Category B Emergency
 - Coordinates not required
 - Widespread
 - No location
 - Centered
 - Linear

Documentation

- Coordinates taken from GPS satellite page.
- Check format
 - hddd.ddddd 38.51338
- Write down as appear on unit (include N & W)
- TAKE TIME TO WRITE CLEARLY

GPS to Field Notes Errors

- Writing down wrong coordinates
- Check coordinates after recording
- One person read coordinates, second person verify
- Write neatly
- Clearly record site

Field Notes to PW

- Be Careful
- Check data entry
- N latitude entered as positive number
- W longitude entered a a negative number
 - All CONUS W (-)
 - Locations west of international dateline entered as E (+)

Field Notes to PW

- Some digits easily confused
- 9 and 4
- 1 and 7
- 0 and 6
- 2 and 7

Coordinates for Single Site

FEDERAL EMERGENCY MANAGEMENT AGENCY					O.M.B. No. 3067-0151			
PROJECT WORKSHEET			Expires April 30, 2001					
PAPERWORK BURDEN DISCLOSURE NOTICE								
Public reporting burden for this form is estimated to average 30 minutes. The burden estimate includes the time for reviewing								
instructions, searching existing data sources, gathering and maintaining the needed data, and completing and submitting the forn								
You are not required to respond to this collection of information unless a valid OMB control number is displayed in the upper right								
corner of the forms. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing the burden								
Information Collection Management, Federal Emergency Management Agency, 500 C Street, SW, Washington, DC 20472,								
Paperwork Reduction Project (3067-0151). NOTE : Do not send your completed form to this address.								
DECLARATION NO:	PROJECT NO.	FIPS NO.	DATE	(CATEGORY			
FEMADR-								
DAMAGE FACILITY			WORK COMPLETE AS OF:					
				:	%			
APPLICANT		COUNTY						
LOCATION			LATI	TUDE	LONGITUDE			

If linear feature, second coordinates entered into comments

Coordinates for Multiple Sites

Data Entry into NEMIS

- If electronic copy of PW available, copy and paste coordinates into NEMIS
- Often need to add (-) sign to longitude if in CONUS
- Check for correct format hdd.ddddd, make sure not in hdd mm.mmmm
- Use job aid to verify coordinate in correct state.
- Typed versions of PW significantly reduces error.

Section Five

Practical Exercise

Practical Exercise Review

Section Six

Quality Control

Quality Control

- Are your coordinates correct?
- Several different methods to check.
- Compare to original field notes
- Check against acceptable ranges Job Aid
- Enter coordinates into mapping program
- Users (Data entry, GIS, Mitigation, Environmental, Historic) bring quality problems to PO or PAC

Web-based Mapping Services

- Topozone
 - City name & coordinates
 - www.topozone.com
- US Census Tiger Map
 - City name & coordinates
 - Tiger.census.gov
- MapQuest
 - Address only
 - www.mapquest.com

TopoZone - The Web's Topographic Map, and more! - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Click on the legend to download it as a GIF file. Place a marker on this map:	Enter precise coordinates:	
Latitude(deg): 39.69521	Latitude(deg): 39.69521 Longitude(deg): -77.32671	
Longitude(deg): -77.32671 Symbol: Crosshairs	Map Width(deg):	
Label: Marker URL:	Map Height(deg):	
sorry, but no font control yet	Choose a color palette: (default)	
	REDRAW MAP	
You can also search for a U.S. city or town:		
Name: State(optional): State(optional): Search		
Or choose from the following preset values: <u>Washington, D.C.</u> (default), <u>The Mall</u> , <u>Continental United</u>	States, Entire United States, Northeast U.S., New York City.	
This request serviced by (tiger.census.gov)		

For further information, refer to the $TIGER\ Map\ Service$ web page, located at URL:

http://www.census.gov/ftp/pub/geo/www/tiger/tigermap.html

O Quintiles or O Eq Interval

*average--true scale depends on monitor resolution

FOIA | Privacy Statement | Confidentiality | Quality | Accessibility | Contact Us | Doing business with us

USCENSUSBUREAU

This mapping engine uses 1998 TIGER/Line® data and 1990 Decennial Census data.

Basic Mapping Programs

- Microsoft Streets & Trips
- Maptech Terrain Navigator

Section Seven

Summary

Objectives

- ✓ Explain FEMA's use of coordinates.
- ✓ Explain basic GPS theory as applied to actual field use.
- ✓ List common problems and their prevention.
- ✓ Demonstrate the ability to configure the unit, obtain, record, and verify coordinates in the field.

Summary Source of Error

Type of Error	Source of Error	Effect
dGPS	GPS system	3 m
GPS	GPS system	15 m
Wrong Datum	Configuration	0.1 km
Wrong Format	Configuration	50 km
Transposing Digits	Human	5,000 km
Wrong Sign	Human	Half the world

Summary Field Operation

- Good safe location
- Turn on unit
- Wait for good satellite signal
- Walk to proper location
- Record coordinates
- Quality check data upon return

Additional Resources

- User's manual www.garmin.com/
- Tutorial on GPS
 - Trimble site www.trimble.com
 - Garmin book www.garmin.com
- WAAS Information FAA site gps.faa.gov
- USGS Mapping and Datums www.usgs.gov
- USCG GPS Site www.navcen.uscg.gov

Questions?